Stannylated 2,3-O-Isopropylidene- β -D-ribofuranose **Derivatives**

Lynne A. Burnett, R. Alan Howie, Simon J. Garden,† Helena Rufino and James L. Wardell*

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, UK

The structures of methyl 5-deoxy-2,3-O-isopropylidene-5-C-R₃Sn- β -D-ribofuranosides (3), [5-O-(methyl 2,3-O-isopropylidene- β -D-ribofuranosyl)methyl]_nR_mR'_(4-m-n) stannanes (4) and 3-triphenylstannylpropyl 2,3-O-isopropylidene- β -D-ribofuranoside (5) have been investigated.

Much interest has been shown in furanose ring conformations of carbohydrates in solution and the solid state.¹⁻⁴ Ribofuranosyl rings, in general, have attracted attention as a consequence of their presence in nucleosides and nucleotides; particularly well studied have been 2,3-unsubstituted β -D-ribofuranosyl derivatives²⁻⁴ and their 2-deoxy analogues. The more rigid $2,3$ -O-isopropylidene- β -D-ribofuranosyl derivatives 2 have attracted less, but still significant, attention.9,10 We have investigated the solution structures of 3 $(R = Ph$ or Me), 4 $(R = R' = Ph$ or Bu, $n = 1$; $R = R' = Ph$, $n = 2$ or 3; $R = Ph$, $R' = Me$, $m = 1$ or 2, $n = 1$) and 5, as well as the crystal structures of 3 (R = Ph) and 4 ($R = R' = Ph$, $n = 1$). The synthesis of 3–5 are shown in Scheme 1.

Crystal Data for 3 (R = Ph). $-C_{27}H_{30}O_4Sn$, $M_r = 537.2$, $F(000) =$ 548, triclinic, $a = 9.480(4)$, $b = 10.586(4)$, $c = 14.134(9)$ Å, $\alpha =$ 104.98(4), $\beta = 105.41(4)$, $\gamma = 99.83(4)$ °, $V = 1279(1)$ Å³, space group P1, $Z = 2$, $D_x = 1.395$ g cm⁻³, $\mu \text{(MoK\alpha)} = 1.028$ mm⁻¹. The data were collected at 298 K on a Nicolet P3 diffractometer using monochromated Mo-K α radiation ($\lambda = 0.710$ 69 Å). The final R value was 0.053 ($R_{\rm w}$ =0.061).

Crystal Data for 4 ($R = R' = Ph$, $n = 1$). $-C_{28}H_{32}O_5Sn$, $M_r =$ 567.3, $F(000) = 1160$, orthorhombic, $a = 9.187(8)$, $b = 12.801(13)$, $c = 22.899(17)$ Å, $V = 2693(4)$ Å³, space group $P2_12_12_1$, $Z = 4$, $D_x = 1.399$ g cm⁻³, $\mu(\text{MoK}\alpha) = 0.98$ mm⁻¹. The data were collected at 298 K on a Nicolet P3 diffractometer using monochromated

Mo-K α radiation ($\lambda = 0.71069$ Å). The final R value was 0.067 $(R_w=0.050)$.

The two independent molecules in the asymmetric cell of solid $(3; R = Ph)$ are shown in Fig. 2. The difference between the two molecules concerns the orientation of the triphenylstannyl unit relative to the furanose oxygen: the furanose ring conformations in both molecules are, however, similar. The tin atom in each molecule has a distorted tetrahedral geometry with bond angles at tin varying from 106.3(4) to $114.5(4)°$ in molecule 1 and from 103.0(4) to $118.3(4)^\circ$ in molecule 1A. The 119 Sn and 13 C solid state NMR spectra also indicate the presence of two molecular arrangements. The differences between the solution $\delta(^{119}Sn)$ value (-109.6) and the solid state $\delta(^{119}Sn)$ values (-81.9 and -96.3 : mean -89.1) are taken to be simply a medium effect: the values are as expected for four-coordinate (alkyl) $Ph₃Sn$ species.

The one independent molecule in the asymmetric unit of 4 $(R = R' = Ph, n = 1)$ is shown in Fig. 5. The geometry about tin is distorted tetrahedral with bond angles at tin between 106.1(4) and 112.8(5)°: although the $Sn-O(5)$ bond length is short $[2.897(10)$ Å, the bond angles at tin and the $\delta(^{119}Sn)$ NMR solid state value (-135.9) indicate that a significant Sn—O interaction is absent. The $\delta(^{119}Sn)$ value for 4 ($R = R' = Ph$, $n = 1$) scarely changes on dissolution $(-142.9 \text{ to } -135.9)$.

Scheme 1 Reagents: i, MeOH, Me₂CO, H₃O⁺; ii, H₂C=CHCH₂OH, Me₂CO, H₃O⁺; iii, TosCl, py; iv, R_mR'_{4-m-n}Sn(CH₂I)_n, NaH; v, R₃SnLi; vi, Ph₃SnH, AIBN

*To receive any correspondence.

Puckering parameters² for the furanose rings in solid 3 $(R = Ph)$ $(P = 284.4^{\circ}; \tau_m = 36.2^{\circ}$ in molecule 1; $P = 279.9^{\circ};$ τ_m =30.70° in molecule 1A) correspond to conformations

J. Chem. Research (S), 1998, 418±419 J. Chem. Research (M), 1998, 1801-1843

^{\$}Present address: Departimento de Quimica Organica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP 21910, Rio de Janeiro-RJ, Brazil.

Fig. 1 Pseudorotational cycle of furanose rings showing the ten envelope (E) and ten twist (T) conformations

close to ${}^{1}T_{0}$ on the side towards E_{0} (*i.e.* just to the north of the west point on the pseudorotational cycle), see Fig. 1.⁵ The solid state conformation of the furanose ring in 4 $(R = R' = Ph, n = 1)$ is also near ${}^{4}T_{0}$ $[P = 257.4^{\circ};$ $\tau_{\rm m}=31.5^{\circ}$].⁵

Kline and Serianni calculated values of $3J(HH)$ from phase angle P and puckering amplitude τ_m values;^{4b} using their graphical plots, with values for $\tau_{\rm m}$ and P of 33 and 282° , respectively, values of ${}^3J(H^1H^2)$, ${}^3J(H^2H^3)$ and ${}^3J(H^3H^4)$, for $3(12.8)$ (R – Rb) were eplayleted to be 28.15 , 7.8 $J(H³H⁴)$ for 3 (R = Ph) were calculated to be *ca.* 1.5, 7.8 and 1.0 Hz, respectively. Essentially the same $3J(HH)$ values were calculated for 4 $(R = R' = Ph, n = 1)$. These solid state values are close to the values of $0-0.5$, $6.0-6.5$ and 0-1.6 Hz, respectively, directly measured in solution: thus no significant change in conformation results on dissolution. Similar conformational equilibria in solution are indicated for the furanose rings in all molecules, 3–5, by the similar $3J(HH)$ values; the stannyl substituents have little influence on the solution conformations. The solution conformation equilibria^{9*a*} for $3-5$ is considered to be $E = {}^4T_0 = E_0 = {}^1T_0 = {}^1E.$

Complete ${}^{1}H$, ${}^{13}C$ and ${}^{119}Sn$ NMR solution spectra of the (iodomethyl)stannane precursors of 4 have been obtained. The $\delta(^{119}Sn)$ values of Ph_{4-n}Sn(CH₂I)_n increase with n, i.e. $-120.0, -104.4, -80.4$ and -47.7 for $n = 1-4$; in contrast,

Fig. 2 The two independent molecules of **3** $(R = Ph)$ showing the atom numbering scheme. Atoms are represented by 40% probability ellipsoids. Hydrogen atoms have been omitted

Fig. 5 The atom numbering scheme for **4** ($R = R' = Ph, n = 1$). Atoms are represented by 40% probability ellipsoids. Hydrogen atoms have been omitted

 $\delta(^{119}Sn)$ values for 4 (R = R' = Ph) exhibit a minimum value at $n = 2$.

We thank the EPSRC solid state NMR service, based at the University of Durham for the data for compounds 3 $(R = Ph)$ and 4 $(R = R' = Ph, n = 1)$ and acknowledge the use of the EPSRCs Chemical Database at Daresbury. The following are thanked for providing support: Carnegie Trust, Scotland (for L.A.B.), EPSRC (for S.J.G.) and JNICT, Portugal (for H.R.).

Techniques used: ${}^{1}H$, ${}^{13}C$ and ${}^{119}Sn$ solution NMR, ${}^{13}C$ and ${}^{119}Sn$ solid state NMR, X-ray crystallography, MS, IR

References: 44

Tables: 6 (NMR; selected bond lengths & angles and torsional angles; crystal data)

Received, 16th April 1998; Accepted, 23rd April 1998 Paper E/8/02875C

References cited in this synopsis

- 1 V. N. Bartenev, N. G. Kamenva and A. A. Lipanov, Acta Crystallogr., Sect. B, 1987, 43, 275; M. Remin, J. Biomol. Struct. Dyn., 1988, 6, 367; I. A. Il'cheva, N. G. Esipova, V. G. Tumanyan, B. P. Gottikh and V. L. Florentev, Bioorg. Khim., 1989, 15, 800; J. Jimenez-Barbero, M. Bernabe and M. Martin-Lomas, Tetrahedron, 1988, 44, 1441.
- 2 C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1972, 94, 8205; 1973, 95, 2333.
- 3 C. A. Podlasek, W. A. Stripe, I. Carmichael, M. Shang, B. Basu and A. S. Serianni, J. Am. Chem. Soc., 1996, 118, 1413 and references therein.
- 4 (a) A. S. Serianni and R. Barker, J. Org. Chem., 1984, 49, 3292 and references therein; (b) P. C. Kline and A. S. Serianni, J. Am. Chem. Soc., 1990, 117, 7373.
- 5 S. Cros, C. Herve du Penhoat, S. Perez and A. Imberty, Carbohydr. Res., 1993, 248, 81; M. Smith and C. D. Jardetzky, J. Mol. Spectrosc., 1968, 28, 70.
- 9 (a) E. J. Freyne, R. A. Dommisse, J. A. Lepoivre and F. C. Alderweireldt, J. Carbohydr., Nucleosides, Nucleotides, 1980, 7, 263; (b) D. W. Jones, T. T. Mokoena, D. H. Robinson and G. Shaw, Tetrahedron, 1981, 37, 2995; (c) H. Ohrui and S. Emoto, *J. Org. Chem.*, 1977, **42**, 1951; (d) V. A. Timoshchuk, T. M. Ermolenko and A. A. Akhrem, J. Org. Chem., USSR, 1988, 24, 1092; (e) A. Gaudemer, F. Nief, R. Pontikis and J. Zylber, Org. Magn. Reson., 1977, 10, 135.
- 10 D. A. Fletcher, R. F. McMeeking and D. Parkin, J. Chem. Inf. Comput. Sci., 1996, 36, 746; F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 8, 1, 31.