Stannylated 2,3-*O*-Isopropylidene- β -D-ribofuranose Derivatives

Lynne A. Burnett, R. Alan Howie, Simon J. Garden,
† Helena Rufino and James L. Wardell*

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, UK

The structures of methyl 5-deoxy-2,3-*O*-isopropylidene-5-*C*-R₃Sn- β -D-ribofuranosides (**3**), [5-*O*-(methyl 2,3-*O*-isopropylidene- β -D-ribofuranosyl)methyl]_nR_mR'_(4-m-n) stannanes (**4**) and 3-triphenylstannylpropyl 2,3-*O*-isopropylidene- β -D-ribofuranoside (**5**) have been investigated.

Much interest has been shown in furanose ring conformations of carbohydrates in solution and the solid state.^{1–4} Ribofuranosyl rings, in general, have attracted attention as a consequence of their presence in nucleosides and nucleotides; particularly well studied have been 2,3-unsubstituted β -D-ribofuranosyl derivatives^{2–4} and their 2-deoxy analogues. The more rigid 2,3-*O*-isopropylidene- β -D-ribofuranosyl derivatives **2** have attracted less, but still significant, attention.^{9,10} We have investigated the solution structures of **3** (R = Ph or Me), **4** (R = R' = Ph or Bu, n = 1; R = R' = Ph, n = 2 or 3; R = Ph, R' = Me, m = 1 or 2, n = 1) and **5**, as well as the crystal structures of **3** (R = Ph) and **4** (R = R' = Ph, n = 1). The synthesis of **3**–**5** are shown in Scheme 1.

Crystal Data for **3** (R = Ph).—C₂₇H₃₀O₄Sn, $M_r = 537.2$, F(000) = 548, triclinic, a = 9.480(4), b = 10.586(4), c = 14.134(9) Å, $\alpha = 104.98(4)$, $\beta = 105.41(4)$, $\gamma = 99.83(4)^{\circ}$, V = 1279(1) Å³, space group *P*1, Z = 2, $D_x = 1.395$ g cm⁻³, μ (MoK α) = 1.028 mm⁻¹. The data were collected at 298 K on a Nicolet P3 diffractometer using monochromated Mo-K α radiation ($\lambda = 0.710$ 69 Å). The final *R* value was 0.053 ($R_w = 0.061$).

Crystal Data for **4** (R = R' = Ph, n = 1).—C₂₈H₃₂O₅Sn, $M_r = 567.3$, F(000) = 1160, orthorhombic, a = 9.187(8), b = 12.801(13), c = 22.899(17) Å, V = 2693(4) Å³, space group $P2_12_12_1$, Z = 4, $D_x = 1.399$ g cm⁻³, μ (MoK α) = 0.98 mm⁻¹. The data were collected at 298 K on a Nicolet P3 diffractometer using monochromated

Mo-K α radiation ($\lambda = 0.71069$ Å). The final *R* value was 0.067 ($R_w = 0.050$). The two independent molecules in the asymmetric cell of

The two independent molecules in the asymmetric cell of solid (3; R = Ph) are shown in Fig. 2. The difference between the two molecules concerns the orientation of the triphenylstannyl unit relative to the furanose oxygen: the furanose ring conformations in both molecules are, however, similar. The tin atom in each molecule has a distorted tetrahedral geometry with bond angles at tin varying from 106.3(4) to 114.5(4)° in molecule 1 and from 103.0(4) to 118.3(4)° in molecule 1A. The ¹¹⁹Sn and ¹³C solid state NMR spectra also indicate the presence of two molecular arrangements. The differences between the solution δ (¹¹⁹Sn) value (-109.6) and the solid state δ (¹¹⁹Sn) values (-81.9 and -96.3: mean -89.1) are taken to be simply a medium effect: the values are as expected for four-coordinate (alkyl)Ph₃Sn species.

The one independent molecule in the asymmetric unit of **4** ($\mathbf{R} = \mathbf{R}' = \mathbf{Ph}, n = 1$) is shown in Fig. 5. The geometry about tin is distorted tetrahedral with bond angles at tin between 106.1(4) and 112.8(5)°: although the Sn—O(5) bond length is short [2.897(10) Å], the bond angles at tin and the δ (¹¹⁹Sn) NMR solid state value (-135.9) indicate that a significant Sn—O interaction is absent. The δ (¹¹⁹Sn) value for **4** ($\mathbf{R} = \mathbf{R}' = \mathbf{Ph}, n = 1$) scarely changes on dissolution (-142.9 to -135.9).

Scheme 1 Reagents: i, MeOH, Me₂CO, H₃O⁺; ii, H₂C=CHCH₂OH, Me₂CO, H₃O⁺; iii, TosCl, py; iv, $R_mR'_{4-m-n}Sn(CH_2I)_n$, NaH; v, R_3SnLi ; vi, Ph₃SnH, AIBN

*To receive any correspondence.

Puckering parameters² for the furanose rings in solid **3** (R = Ph) ($P = 284.4^{\circ}$; $\tau_{\rm m} = 36.2^{\circ}$ in molecule 1; $P = 279.9^{\circ}$; $\tau_{\rm m} = 30.70^{\circ}$ in molecule 1A) correspond to conformations

J. Chem. Research (S), 1998, 418–419 J. Chem. Research (M), 1998, 1801–1843

[†]Present address: Departimento de Quimica Organica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP 21910, Rio de Janeiro-RJ, Brazil.

Fig. 1 Pseudorotational cycle of furanose rings showing the ten envelope (E) and ten twist (T) conformations

close to ${}^{1}T_{0}$ on the side towards E_{0} (*i.e.* just to the north of the west point on the pseudorotational cycle), see Fig. 1.⁵ The solid state conformation of the furanose ring in **4** ($\mathbf{R} = \mathbf{R'} = \mathbf{Ph}$, n = 1) is also near ${}^{4}T_{0}$ [$P = 257.4^{\circ}$; $\tau_{\rm m} = 31.5^{\circ}$].⁵

Kline and Serianni calculated values of ${}^{3}J(\text{HH})$ from phase angle *P* and puckering amplitude $\tau_{\rm m}$ values;^{4b} using their graphical plots, with values for $\tau_{\rm m}$ and *P* of 33 and 282°, respectively, values of ${}^{3}J(\text{H}^{1}\text{H}^{2})$, ${}^{3}J(\text{H}^{2}\text{H}^{3})$ and ${}^{3}J(\text{H}^{3}\text{H}^{4})$ for 3 (R = Ph) were calculated to be *ca.* 1.5, 7.8 and 1.0 Hz, respectively. Essentially the same ${}^{3}J(\text{HH})$ values were calculated for 4 (R = R' = Ph, *n* = 1). These solid state values are close to the values of 0–0.5, 6.0–6.5 and 0–1.6 Hz, respectively, directly measured in solution: thus no significant change in conformation results on dissolution. Similar conformational equilibria in solution are indicated for the furanose rings in all molecules, 3–5, by the similar ${}^{3}J(\text{HH})$ values; the stannyl substituents have little influence on the solution conformations. The solution conformation equilibria^{9a} for 3–5 is considered to be ${}^{4}E \rightleftharpoons {}^{4}T_{0} \rightleftharpoons E_{0} \rightleftharpoons {}^{1}T_{0} \rightleftharpoons {}^{1}E$. Complete ${}^{1}\text{H}$, ${}^{13}\text{C}$ and ${}^{119}\text{S}$ n NMR solution spectra of the

Complete ¹H, ¹³C and ¹¹⁹Sn NMR solution spectra of the (iodomethyl)stannane precursors of **4** have been obtained. The δ (¹¹⁹Sn) values of Ph_{4-n}Sn(CH₂I)_n increase with *n*, *i.e.* -120.0, -104.4, -80.4 and -47.7 for n = 1-4; in contrast,

Fig. 2 The two independent molecules of **3** (R = Ph) showing the atom numbering scheme. Atoms are represented by 40% probability ellipsoids. Hydrogen atoms have been omitted

Fig. 5 The atom numbering scheme for **4** (R = R' = Ph, n = 1). Atoms are represented by 40% probability ellipsoids. Hydrogen atoms have been omitted

 $\delta(^{119}$ Sn) values for **4** (R = R' = Ph) exhibit a minimum value at n = 2.

We thank the EPSRC solid state NMR service, based at the University of Durham for the data for compounds **3** (R = Ph) and **4** (R = R' = Ph, n = 1) and acknowledge the use of the EPSRCs Chemical Database at Daresbury. The following are thanked for providing support: Carnegie Trust, Scotland (for L.A.B.), EPSRC (for S.J.G.) and JNICT, Portugal (for H.R.).

Techniques used: $^1H,\ ^{13}C$ and ^{119}Sn solution NMR, ^{13}C and ^{119}Sn solid state NMR, X-ray crystallography, MS, IR

References: 44

Tables: 6 (NMR; selected bond lengths & angles and torsional angles; crystal data)

Received, 16th April 1998; Accepted, 23rd April 1998 Paper E/8/02875C

References cited in this synopsis

- V. N. Bartenev, N. G. Kamenva and A. A. Lipanov, Acta Crystallogr., Sect. B, 1987, 43, 275; M. Remin, J. Biomol. Struct. Dyn., 1988, 6, 367; I. A. Il'cheva, N. G. Esipova, V. G. Tumanyan, B. P. Gottikh and V. L. Florentev, Bioorg. Khim., 1989, 15, 800; J. Jimenez-Barbero, M. Bernabe and M. Martin-Lomas, Tetrahedron, 1988, 44, 1441.
- 2 C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1972, 94, 8205; 1973, 95, 2333.
- 3 C. A. Podlasek, W. A. Stripe, I. Carmichael, M. Shang, B. Basu and A. S. Serianni, *J. Am. Chem. Soc.*, 1996, **118**, 1413 and references therein.
- 4 (a) A. S. Serianni and R. Barker, J. Org. Chem., 1984, 49, 3292 and references therein; (b) P. C. Kline and A. S. Serianni, J. Am. Chem. Soc., 1990, 117, 7373.
- 5 S. Cros, C. Herve du Penhoat, S. Perez and A. Imberty, *Carbohydr. Res.*, 1993, **248**, 81; M. Smith and C. D. Jardetzky, *J. Mol. Spectrosc.*, 1968, **28**, 70.
- 9 (a) E. J. Freyne, R. A. Dommisse, J. A. Lepoivre and F. C. Alderweireldt, J. Carbohydr., Nucleosides, Nucleotides, 1980, 7, 263; (b) D. W. Jones, T. T. Mokoena, D. H. Robinson and G. Shaw, Tetrahedron, 1981, 37, 2995; (c) H. Ohrui and S. Emoto, J. Org. Chem., 1977, 42, 1951; (d) V. A. Timoshchuk, T. M. Ermolenko and A. A. Akhrem, J. Org. Chem., USSR, 1988, 24, 1092; (e) A. Gaudemer, F. Nief, R. Pontikis and J. Zylber, Org. Magn. Reson., 1977, 10, 135.
- 10 D. A. Fletcher, R. F. McMeeking and D. Parkin, J. Chem. Inf. Comput. Sci., 1996, 36, 746; F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 8, 1, 31.